If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+34x-15=0
a = 8; b = 34; c = -15;
Δ = b2-4ac
Δ = 342-4·8·(-15)
Δ = 1636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1636}=\sqrt{4*409}=\sqrt{4}*\sqrt{409}=2\sqrt{409}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{409}}{2*8}=\frac{-34-2\sqrt{409}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{409}}{2*8}=\frac{-34+2\sqrt{409}}{16} $
| 21c-12=30 | | 1-(2-3x)=4(1+x)-2 | | 8x+8=4x+8 | | -7(-6-6/7)=12(x-7/2) | | 2t-1.7=3.7t-14.96 | | 20(x)-23=14(x)-13 | | 9x-(7x+5)=4x-21 | | 9(y-4=-10(y+7/3 | | 15=10s-2s-1 | | 5(x)-12=4(x)-14 | | 10(x)=7(x)+5+2(x) | | (X+21)+(2x+9)=99 | | 11x12=87 | | 2z+3z-5=0 | | -114(x)=-1176-16(x) | | 56x^2+18x-8=0 | | -7(x)+5+8(x)=5-29 | | 12t^2-15t-18=0 | | (3-2x)/4=1-3x | | -7x+5+8x=5–29 | | -2.5y+14.72=2.3 | | 5/12d+1/6d+1/3D+1/12d=d | | -114x=-1176–16x | | 2/3=-15/9+5/8x | | x=0.01^(-3/2) | | -114q=-1176–16q | | 2(3x-1)=-(4x+6)= | | 10(3x2-13x)=-40 | | 4=1/2x+2/3 | | -(5y+1)-(4y-4)=3 | | 5a^2-7a=2a(a-3) | | x(-4x)=x+9 |